(D) arcad

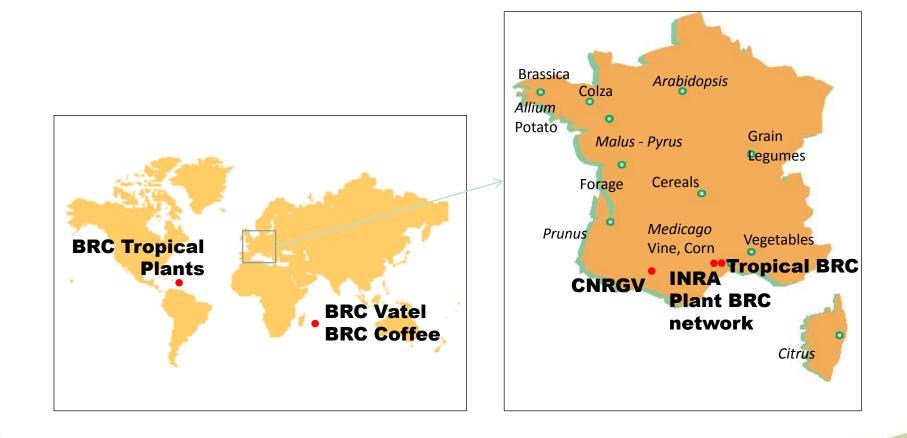
a structuring node in the French plant genetic resource conservation system

> Jean-Christophe GLASZMANN Jean-Louis PHAM Jean-Pierre LABOUISSE

arcad@agropolis.fr www.arcad-project.org

Cirad INRA IRD Montpellier

ARCAD


- A node within a decentralized system
- Building on historical assets
- Facilities, research, training
- Scientific focus
- Some ongoing activities

The French plant genetic resource conservation system

- No national genebank = Decentralized system
- Temperate and Mediteranean species:
 - A specific conservation network for each of the main species (maize, wheat, grapvine, etc) which associates public and private partners
- Tropical species
 - Collections mainly built in the 80's
 - Maintained in Montpellier, Indian Ocean and French West Indies
 - Labelled Biological Resource Centers ensure high conservation standards
- Labelled Biological Resource Centers ensure high conservation standards

Plus and Minus of a decentralized system

Plus

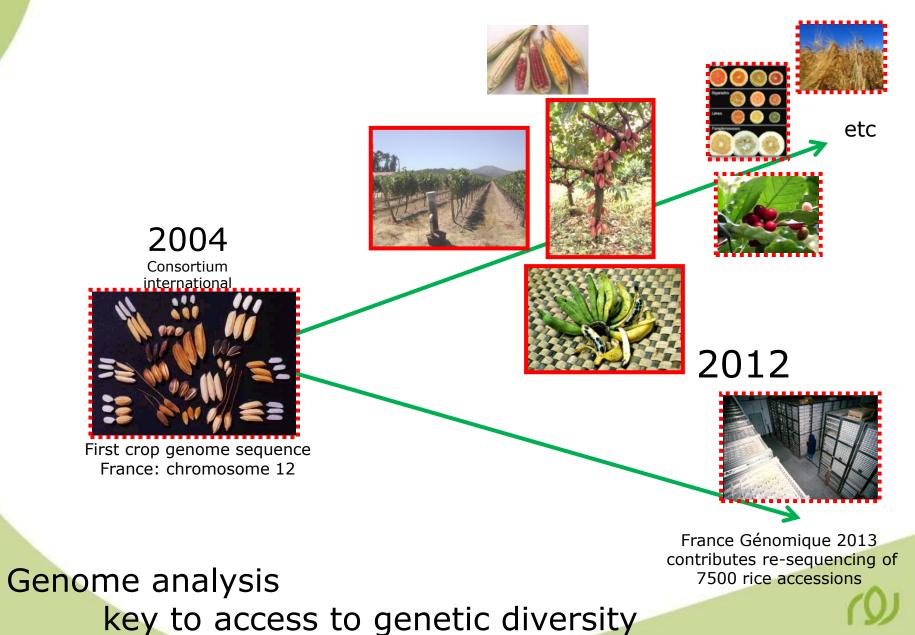
- Resilience
- Various stakeholders involved
- Scientists involved in conservation : links w/ research

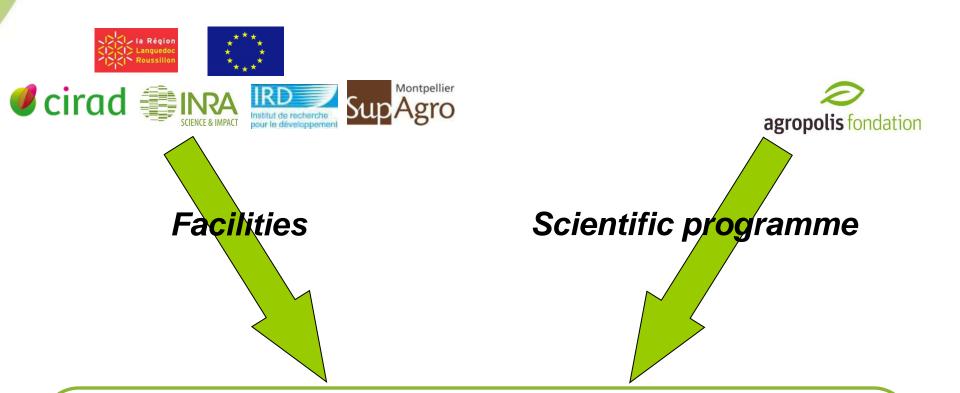
Minus

- Lack of coordination (no national information system)
- Lack of visibility in the international environment in front of « big players »
- Not a strong voice in international debates
- New tools

Agropolis, Montpellier: historical assets

 PGR collections grapevine, rice, maize, pearl millet, sorghum, Medicago, etc): >100 000 accessions


BRC name	Institute	Collections	Number of accessions	IBiSA certified
Coffee Tree (Reunion Island & Montpellier)	IRD	Coffee tree	840	Yes
Tropical Plants (Guadeloupe & Martinique)	Cirad-INRA	Pineapple	500	Yes
		Banana	400	
		Sugarcane	1 200	
		Herbarium	10 000	
		Yam	500	
		Mango	100	
Tropical (Montpellier)	Cirad	Rice	50 000	Yes
		Sorghum	30 000	
		Vanila	700	
VATEL (Reunion Island)	Cirad	Tropical garlic	40	Yes
		Underutilized vegetables	120	
INRA Network of Crops BRCs (distributed on 10 locations)	INRA	Arabidopsis sp	70 000	
		Medicago truncatula	14 500	
		Corn	5 200	
		Sunflower	5 480	
		Vine	8 250	
		Cereals	31 200	
		Vegetables	14 200	
		Grain legumes	15 900	Yes
		Brassica sp & rape	1 830	
		Potato	10 500	
		Malus & Pyrus	7 800	
		Prunus	5 300	_
		Forages	3 500	
	INRA & CIRAD	Citrus	1 020	

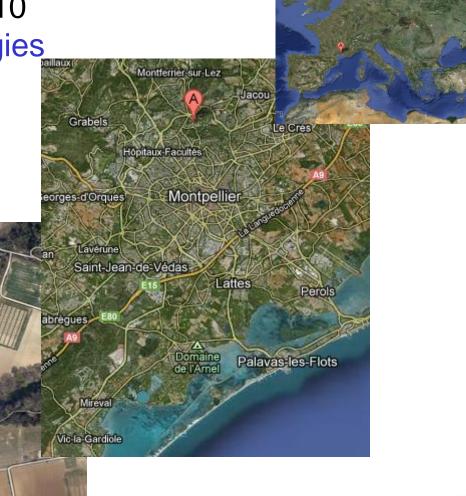

Agropolis: historical assets

- PGR collections

 (grapevine, rice, maize, pearl millet, sorghum, Medicago, etc)
 >100 000 accessions
- Expertise in genetics, genomics and evolutionary biology

Agropolis, Montpellier: historical assets

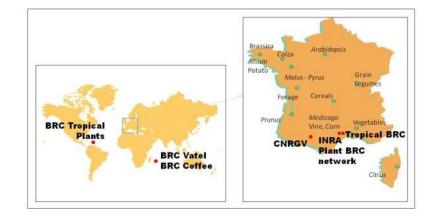
ARCAD : a multi institutional initiative on agrobiodiversity


Objective

2100m² 50 scientists M€ 10 Conservation + DNA Technologies Research + Training

Rue Arthur Young

Dur-Young


Av-Vincent Auric

Instea

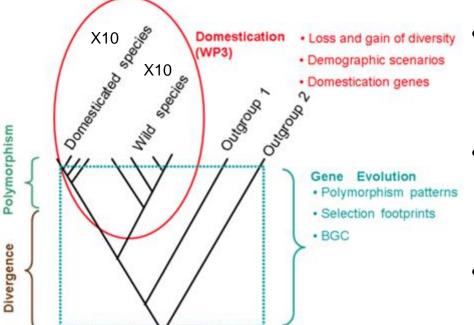

Bring Together

- Germplasm collections
- Technologies
 - Genomics
 - Bioinformatics
- Information systems
- Scientists and disciplins
 - Biological sciences
 - Social sciences

Innovate

- Optimising conservation
 - Grain seeds
 - Cryopreservation
 - DNA
 - Duplications (France, South)
- Automation
- Methods for diversity analysis
 - HTTP genomics, fine scale diversity analysis

<u>Crop domestication</u> : the start of a never-ending story


Genetic content and structure of crop species

EXERCIC: To play grant products a marked to those the sector of the testing, as official MP provide Medican management (Sector) and Medican Area of the Commission of the Medican of Area of the Commission of the Medican Commission of the Medican of the Commission of the Commission of the marked on Sector of the Commission of the marked and Sector (Sector) of the Commission of the Commission of the Commission of the marked on Sector (Sector) of the Commission of the Commission of the Commission of the market of the Medican of the Commission of the post of the Medican of the Commission of the post of the Medican of the Commission of the post of the Medican of the Commission of the post of the Medican of the Commission of the post of the Medican of the Commission of the post of the Medican of the Commission of the Commission of the Medican of the Commission of the Commission of the post of the Medican of the Commission of the Commission of the post of the Medican of the Commission of the Commission of the post of the Commission of the Commission of the Commission of the post of the Commission of the Commission of the Commission of the post of the Commission of the Commission of the Commission of the post of the Commission of the Commission of the Commission of the post of the Commission of the Commission of the Commission of the post of the Commission of the Commission of the Commission of the post of the Commission of the Commission of the Commission of the post of the Commission of the Commission of the Commission of the post of the Commission of the Commission of the Commission of the post of the Commission of the Commission of the Commission of the post of the Commission of the Commission of the Commission of the Commission of the post of the Commission of the Com

Farmers' practices Indigenous and non-indigenous knowledge = everything is possible

Comparative population genomics of crops and their wild relatives

Polymorphism

 \rightarrow Transcriptome sequencing

- Evolution of genetic diversity
 - Loss and recovery
 - Domestication scenarios
- Selection during domestication
 - Domestication genes
 - Cost of domestication
- Comparative approaches
 - Effects of life history traits
 - Convergent evolution
- Comparative evolution of gene families

Species and data acquisition

Banana	Monocot	Perennial	Outcrossing
Palm tree	Monocot	Perennial	Outcrossing
Yam*	Monocot	Annual	Out/clonal
Einkorn	Monocot	Annual	Selfing
Pearl millet	Monocot	Annual	Outcrossing
African rice	Monocot	Annual	Selfing
Sorghum	Monocot	Annual	Selfing
Fonio millet*	Monocot	Annual	Selfing
Cocoa	Dicot	Perennial	Outcrossing
Coffee	Dicot	Perennial	Outcrossing
Coton*	Dicot	Perennial	Selfing
Olive tree*	Dicot	Perennial	Outcrossing
Alfalfa	Dicot	Perennial	Outcrossing
Grappe vine	Dicot	Perennial	Outcrossing
Tomato	Dicot	Annual	Selfing

* Additional species Sequencing running

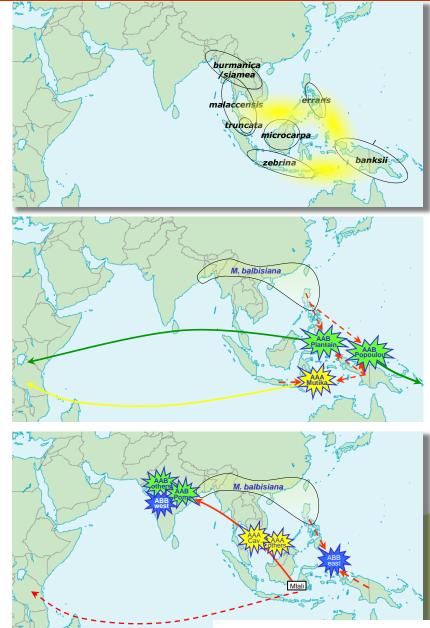
African rice domestication

> 12000 genes > 12Mb > 24000 SNPs

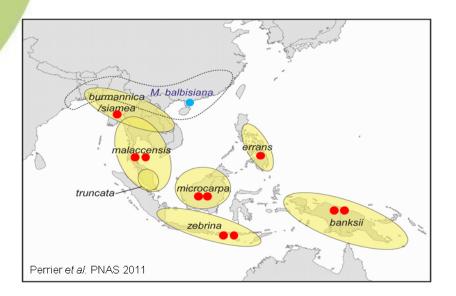
Global polymorphism patterns

➔ Massive loss of diversity

➔ Highly expressed genes are more constrained


Radiation of wild Musa/Domestication

Domestication involved:


- **hybridization** between species and subspecies made possible by **human migration**

selection of diploid and triploid, seedless,
 parthenocapic hybrids by early farmers

Perrier et al, PNAS 2011

Musa diversity and evolution

- ✓ Transcriptome sequencing (RNASeq)
- 10 wild *Musa acuminata* diploids
- 10 cultivated Musa acuminata diploids
- Musa balbisiana, Musa beccarii (outgroups)

✓ SNPs from coding sequences

>15 000 genes

 $\hat{\nabla}$

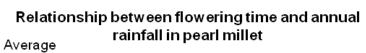
Level of gene sequence diversity within and between wild and cultivated *Musa* diploids?

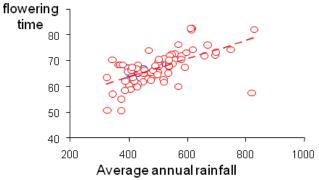
Origin and architecture of the genome of cultivated hybrids

Collection Guadeloupe and CARBAP Cameroun

Nabila Yahiaoui/SEG, ID, APMV, ARCAD-SP1 partners-Fondation Agropolis

Crop adaptation to climate change


Studying genetic and evolutionary processes of adaptation → a focus on phenological responses



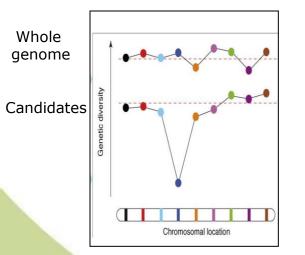
Spatial gradients:

populations/varieties collected along climatic gradients.

- M. truncatula : Latitudinal variation around the Mediterranean basin
- rice : altitudinal variation (Madagascar)
- pearl millet and sorghum : latitudinal gradient in West Africa.

Flow ering time of Pearl millet in Niger 5560 days 5560 days 6670 days 6670 days 7075 days 7075 days

Temporal gradients :


comparing current populations/varieties and populations collected 20-30 years ago on the same site/village

- M. truncatula
- pearl millet
- rice

Searching for selective sweeps throughout spatial gradients

Searching for selective sweeps

- comparison of patterns of diversity for the whole genome
- differentiation between demographic factors affecting polymorphism at the genome scale and effect of selection on candidates

Autogamous Traditionnal cultivation

Medicago truncatula

Autogamous Natural populations

Madagascar Altitudinal variation

Mediterranean region Latitudinal variation (1000 genomes)

ecological genomics »: establishing relationships between environmental and genetic variations

... due to their sensitivity, up-to-date studies might be more sensitive to undocumented demographic effects such as the pattern of migration and the reproduction regime.

In this study, we provide guidelines for the use of popular or recently developed statistical methods to detect footprints of selection.

We simulated 100 populations along a selective gradient and explored different migration models, sampling schemes and rates of self-fertilization. ...

De Mitta et al, Mol Ecol 2013

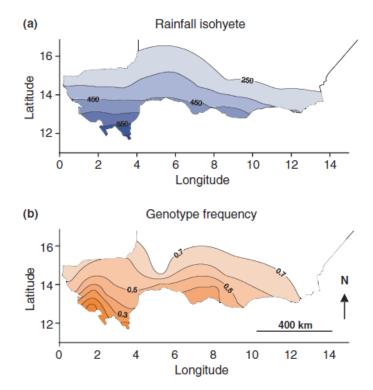
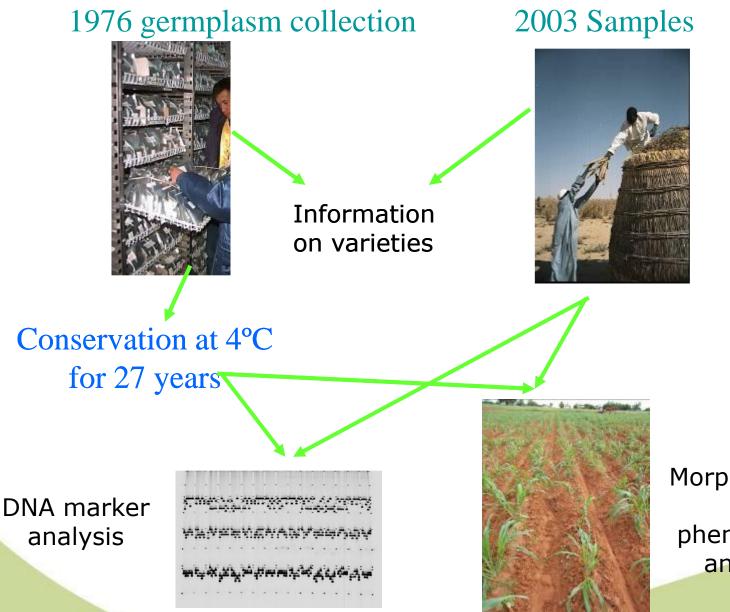
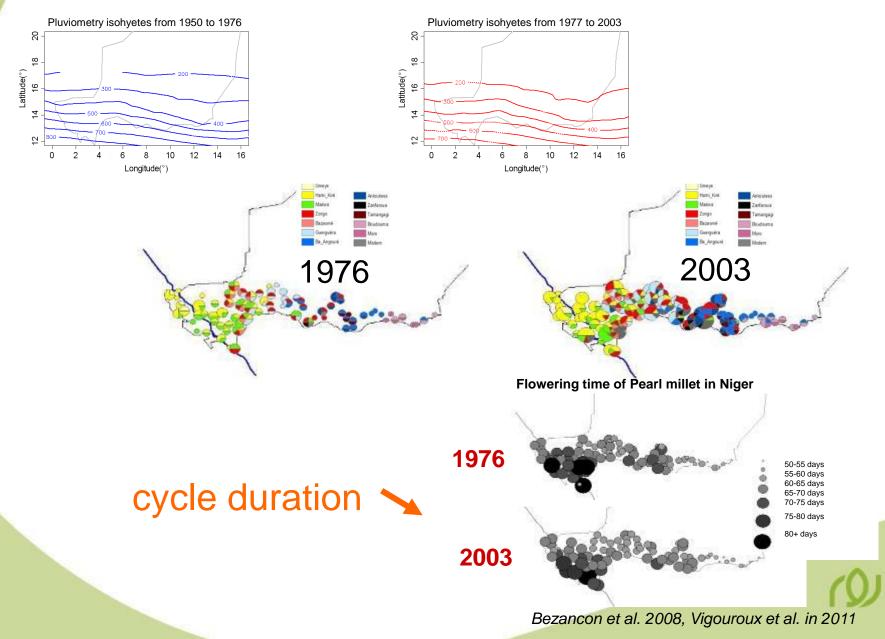
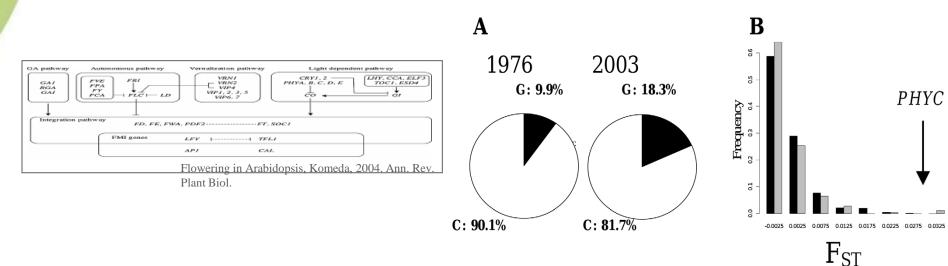



Fig. 5 Rainfall and *PgMADS11* allele frequency. Annual rainfall (in mm) was estimated based on average pluviometric data from 1976 to 2003. Genotype isofrequencies for the *PgMADS11* (M9LCDA2 marker) were calculated using SURFER V7.02. The genotype frequency in populations ranged from <4% to 75% and covaried with rainfall.

Mariac et al, Mol Ecol 2010


Temporal gradients: pearl millet in Niger (1976-2003)

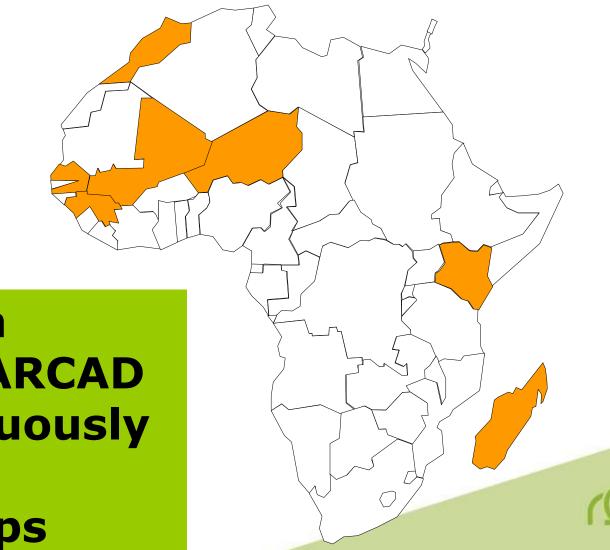

Morphological and phenological analysis

Temporal gradients: pearl millet in Niger (1976-2003)

Rapid changes in phenology of pearl millet landraces inNiger

Temporal gradients: pearl millet in Niger (1976-2003)

1976- 2003 : Increase in the frequency of the early-flowering allele of the PhyC gene



Climatic Variations in the Sahel

Yves Vigouroux^{1,2}*, Cédric Mariac^{1,2}, Stéphane De Mita¹, Jean-Louis Pham¹, Bruno Gérard³, Issoufou Kapran⁴, Fabrice Sagnard⁵, Monique Deu⁵, Jacques Chantereau⁵, Abdou Ali⁶, Jupiter Ndjeunga³, Viviane Luong¹, Anne-Céline Thuillet¹, Abdoul-Aziz Saïdou^{1,2,7}, Gilles Bezançon²

1 Institut de Recherche pour le Développement, Montpellier, France, 2 Institut de Recherche pour le Développement, Niamey, Niger, 3 International Center of Research for the Semi-Arid Tropics, Niamey, Niger, 4 Institut National de la Recherche Agronomique du Niger, Niamey, Niger, 5 Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France, 6 Centre Régional AGHRYMET, Niamey, Niger, 7 Université Abdou Moumouni, Niamey, Niger

ARCAD : study countries (2013)

As an open platform, ARCAD will continuously seek new partnerships

Thank you

