Crowdsourcing approach in East Africa: methods and lessons learned

Jeske van de Gevel, Associate Expert Genetic Diversity
Montpellier, France - 25 March 2015
What is Seeds for Needs

- Researching **how** agricultural biodiversity can help to minimize the risks associated with climate change
- Giving farmers better information and access to a wide range of varieties
- Strengthen seed systems and seed-saving capacity to provide access to planting material that fits farmers’ changing needs

Seeds for Needs started in Ethiopia in 2009 and has spread to 11 countries:

- Cambodia: rice, sweet potato
- Colombia: beans
- **Ethiopia**: barley, wheat
- Honduras: beans
- India: rice, wheat
- **Kenya and Tanzania**: cowpea, pigeon pea, sorghum
- Laos: cucumber, long bean, rice, sweet corn, watermelon
- Papua New Guinea: sweet potato, taro
- **Rwanda and Uganda**: beans
Genetic erosion

Soil degradation

Loss of agricultural biodiversity
Why agricultural biodiversity matters

- Increased resilience to deal with climate risks
- Provides better nutrition
- Protection against biotic stress (pest & diseases)
- To safeguard resilient & adaptive planting material for the future
Genotypic characterisation

Phenotypic characterisation

Farmers knowledge

Genotypic characterisation
Research questions

+ What are the climate change adaptation and risk management strategies of smallholder farmers in different regions and different agroecological zones?
+ What is the current varietal diversity on farms in East Africa?
+ How can we strengthen farmers’ varietal portfolios? What are their preferences and needs?
+ Which favourable traits can be identified through morphological characterization?
+ How are crop varieties performing in different locations and under different management?
+ What is the adaptability potential of different varieties and crops looking at future projections and scenarios for climate change in Kenya and Tanzania?
+ What is a cost-effective way of providing farmers with better information and access to a wider range of varieties?
First step

1. A broad set of varieties is evaluated

1. Select material from the genebank and farmers fields
2. GIS-based selection of promising accessions
3. Multi-location research-led trials
4. Participatory variety selection
Performance of landraces versus the best improved varieties of wheat in Ethiopia

The table tells that:

- 21%, averaged over traits, of the landraces are superior to the best performer IM variety
- Many landraces mature earlier than the IM varieties
- A yield advantage of 61% obtained from the best landrace over the best IM variety (Robe)

<table>
<thead>
<tr>
<th>Trait</th>
<th>Superior (IM)</th>
<th>Superior (LRs)</th>
<th>no</th>
<th>%age</th>
<th>No Geregera</th>
<th>% Geregera</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>59.69</td>
<td>55.54</td>
<td>1</td>
<td>0.3</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>DF</td>
<td>70.8</td>
<td>69.88</td>
<td>1</td>
<td>0.3</td>
<td>5</td>
<td>1.6</td>
</tr>
<tr>
<td>DM</td>
<td>116.59</td>
<td>109.34</td>
<td>57</td>
<td>18.4</td>
<td>71</td>
<td>23.0</td>
</tr>
<tr>
<td>PH</td>
<td>110.34</td>
<td>115.07</td>
<td>8</td>
<td>2.6</td>
<td>5</td>
<td>1.6</td>
</tr>
<tr>
<td>NET</td>
<td>7.14</td>
<td>7.48</td>
<td>90</td>
<td>29.1</td>
<td>48</td>
<td>15.5</td>
</tr>
<tr>
<td>SPL</td>
<td>7.94</td>
<td>9.5</td>
<td>125</td>
<td>40.5</td>
<td>19</td>
<td>6.1</td>
</tr>
<tr>
<td>SPS</td>
<td>41.67</td>
<td>41.83</td>
<td>1</td>
<td>0.3</td>
<td>2</td>
<td>0.6</td>
</tr>
<tr>
<td>BY</td>
<td>7.17</td>
<td>9.99</td>
<td>97</td>
<td>31.4</td>
<td>47</td>
<td>15.2</td>
</tr>
<tr>
<td>GY</td>
<td>2.17</td>
<td>3.49</td>
<td>68</td>
<td>23.9</td>
<td>22</td>
<td>7.1</td>
</tr>
</tbody>
</table>
Ethiopian Unique Genetic Diversity
Development of a Structured Multiparental Population
Nested Association Mapping - NAM - Population

Principal Facts

➢ 52 RIL families

➢ 180 – 200 lines

➢ > 9,000 F6 lines in Dec. 2014

➢ wide phenotypic variation

Modified from Yu et al. 2008
Second step
Survey

1. Focus group discussions
2. Individual interviews

<table>
<thead>
<tr>
<th>Topic</th>
<th>Data collected</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABD</td>
<td>Crops: Major crops (long & short rains). Unseasonal crops, major perennial crops, major vegetables, fruits. Crops in wild conditions, major cash crops. Varieties (target crops): seasonal calendar, management practices, trait preferences, varietal diversity, use Other: pest and diseases/calamities, weather, changes in cropping (loss of varieties).</td>
<td>4 FGDs (15-20 pp) in Western Kenya, Eastern Kenya and Central Tanzania</td>
</tr>
<tr>
<td>Seed System</td>
<td>For target crops (sorghum, pigeon pea and cowpea) > trad varieties vs improved, seed custodians, abandoned varieties, seed sources, limitations in access to seeds, post-harvest storage.</td>
<td></td>
</tr>
<tr>
<td>ABD</td>
<td>Crops grown (incl. variety and area usage) Crops abandoned Intraspecific diversity of sorghum, pigeon pea and cowpea.</td>
<td>338 households in Western Kenya, Eastern Kenya and Central Tanzania</td>
</tr>
<tr>
<td>Seed System</td>
<td>For target crops (sorghum, pigeon pea and cowpea) on varietal level: seed sources, change of seedlots, storage of seeds (practices, varieties), status (4-cell analysis), trait performance of each variety, constraints in accessing seeds, seed prices.</td>
<td></td>
</tr>
</tbody>
</table>
Participatory Evaluation

Ethiopia
- 30 farmers per location (15 male + 15 female)
- Individual score on 5 traits for 800 plots
- > 200 thousands data points

Kenya + Tanzania
- 20 sorghum and 15 cowpea varieties selected
- 60 farms in 3 sites
- Favourable traits determined by farmers

<table>
<thead>
<tr>
<th>Cowpea</th>
<th>Drought Resistance</th>
<th>Early Maturity</th>
<th>Grain size</th>
<th>Colour</th>
<th>Leaf amount</th>
<th>Leaf size</th>
<th>Creeping-Climbing variety</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorghum</td>
<td>Drought Resistance</td>
<td>Early Maturing</td>
<td>Grain size</td>
<td>Colour</td>
<td>Panicle size</td>
<td>Ability to market</td>
<td>Pest and Disease resistance</td>
<td>Yield</td>
</tr>
</tbody>
</table>
Workaye Village Baby trial (November, 2013) Farmers evaluation data sheet (Mother trial)

Group Number: 1
Replication: 1
Date of Evaluation: 03/03/2006

<table>
<thead>
<tr>
<th>Baby trial</th>
<th>Treat No.</th>
<th>Plot No.</th>
<th>Rep 1</th>
<th>Rep 2</th>
<th>Earliness</th>
<th>Tillerig</th>
<th>Spike Q</th>
<th>Disease</th>
<th>Overall</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>228753</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>204488</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>236269</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>208253</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>210817B</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mother trial

1. Aragaw Mebrate
2. Misganaw Mulugeta

Researcher Data

Farmers score Mother trial
Farmers score Baby trial
Crop suitability mapping

Cowpea potential distribution 2000

Cowpea potential distribution 2050

Legend
- High
- Low

Legend
- High
- Low

Bioversity International
Crowdsourcing varieties
Collecting weather data using iButtons

Credit: Nuestro Diario (8 March 2015)
Outcomes
Empowerment of communities: more resilient to eco-socio-economic changes,

(1) Genetic diversity
(2) Selection & cultivation
(3) Harvest
(4) Value addition
(5) Marketing
(6) Final use

Outcome
Preservation of options for resilient systems

Outcome
Self-reliance of value chain actors on broader set of options, making them more resilient to market changes.

IMPACT
Improved nutrition, incomes and other livelihood benefits
And...

- Strengthen marketing channels
- Crop modelling and prediction mapping
- Participatory plant breeding
- Open Source climate smart seed systems
- Upscale of most promising technologies
- Global information platform on citizen science